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This model is applied to a phenomenological analysis of recent experimental results. A

new demonstration experiment is described.

04.20.-q Classical general relativity.

04.60.-m Quantum gravity.

74.72.-h High-Tc cuprates.

The behavior of a Bose condensate { or more speci�cally of a superconductor { in an

external gravitational �eld has been the subject of some study in the past [1]. The presence in

a superconductor of currents 
owing without any measurable resistance suggests that it could

be used as a sensitive detection system, in particular for gravitational �elds. The possible

back-reaction of induced supercurrents on the gravitational �eld itself has been studied too, in

analogy with the familiar treatment of the Meissner e�ect. As one can easily foresee, it turns

out that the \gravitational Meissner e�ect" is extremely weak: it was computed for instance

that in a neutron star with density of the order of 1017 kg=m3 the London penetration depth

is ca. 12 km [2].

The reason for the extremelyweak coupling of the supercurrents to the classical gravitational

�eld is very general and originates of course from the smallness of the coupling between gravity

and the energy-momentum tensor of matter T��. One might wonder whether in a quantum

theory of gravity { or at least in an approximation of the theory for weak �elds { the Bose

condensate of the Cooper pairs, due to its macroscopic quantum character, can play a more

subtle role than a simple contribution to the energy-momentum tensor.

In a quantum-�eld representation the condensate is described by a �eld with non-vanishing

vacuum expectation value �0, possibly depending on the spacetime coordinate x. It is inter-

esting to insert the action of this �eld, suitably \covariantized", into the functional integral

of gravity, expand the metric tensor g�� in weak �eld approximation and check if the only

e�ect of �0(x) is to produce gravity/condensate interaction vertices proportional to powers of

� =
p
16�G. One �nds that in general this is not the case; the quadratic part of the gravi-

tational action is modi�ed too, by receiving a negative de�nite contribution. It can thus be

expected that the condensate induces localized instabilities of the gravitational �eld, in a sense
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which we shall precise in Section 1.

The present paper is based on the letter [5] and originates in part from previous theoretical

work [3] and in part from recent experimental results ([4, 21]; see Section 2) which show the

possibility of an anomalous interaction, in special conditions, between the gravitational �eld

and a superconductor. We have developed a theoretical model (Section 3) which on the basis

of the general results of Section 1 allows to interpret in a consistent way the main reported

experimental observations. In Section 4 we collect some general considerations concerning the

total energetic balance of the process described in Section 3. In Section 5 we analyze arguments

for and against the hypothesis of a \threshold density" for the condensate density and �nally

Section 6 comprises some conclusive remarks. Sections 2, 3 (in part) and 4 have a less complex

formal content than Section 1 and are readable without a detailed knowledge of quantum �eld

theory.

1 E�ect of a local cosmological term in Euclidean quan-

tum gravity.

1.1 Global cosmological term.

Let us consider the action of the gravitational �eld g��(x) in its usual form:

Sg =
Z
d4x

q
g(x)

�
�

8�G
� 1

8�G
R(x)

�
; (1)

where �R(x)=8�G is the Einstein term and �=8�G is the cosmological term which generally

can be present.

It is known that the coupling of the gravitational �eld with another �eld is formally obtained

by \covariantizing" the action of the latter; this means that the contractions of the Lorentz

indices of the �eld must be e�ected through the metric g�� (x) or its inverse g��(x) and that the

ordinary derivatives are transformed into covariant derivatives by inserting the connection �eld.

Moreover, the Minkowskian volume element d4x is replaced by d4x
q
g(x), where g(x) is the

determinant of the metric. The insertion of the factor
q
g(x) into the volume element has the
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e�ect that any additive constant in the Lagrangian contributes to the cosmological term �=8�G.

For instance, let us consider a Bose condensate described by a scalar �eld �(x) = �0 + �̂(x),

where �0 is the vacuum expectation value and m�j�0j2 represents the particles density of the

ground state in the non-relativistic limit (compare Section 5). The action of this �eld in the

presence of gravity is

S� =
1

2

Z
d4x

q
g(x)

n
[@��̂(x)]

�[@��̂(x)]g
��(x) +m2

�j�̂(x)j2 +m2
�[�

�
0�̂(x) + �̂�(x)�0] +m2

�j�0j2
o
:

(2)

One can easily check that in the total action (Sg + S�) the contribution
1
2m

2
�j�0j28�G is added

to the \intrinsic" gravitational cosmological constant �. (Note that in the covariantized action

above the derivatives are unchanged, since �̂(x) is a scalar quantity.)

The astronomical observations impose a very low limit on the total cosmological term present

in the action of the gravitational �eld. The presently accepted limit is of the order of j�jG <

10�120, which means approximately for � itself j�j < 10�54 cm�2 (we use natural units, in

which �h = c = 1 and thus � has dimensions cm�2, while G has dimensions cm2; G � L2
P lanck �

10�66 cm2). This absence of curvature in the universe at large scale rises a paradox, called

\the cosmological constant problem" (see [6]). In fact the Higgs �elds of the standard model as

well as the zero-point 
uctuations of any quantum �eld including the gravitational �eld itself

generate huge contributions to the cosmological term, which however appear to be somehow

\rescaled" to zero at macroscopic distances. In order to explain how this can occur, several

quantum �eld theoretical models have been proposed [7]. No de�nitive and universally accepted

solution of the paradox seems to be at hand yet, since that would require in fact a complete

non-perturbative treatment of gravity which appears not feasible up to now.

A model in which the large scale vanishing of the e�ective cosmological constant is repro-

duced in a natural way through numerical simulations is the Euclidean quantum gravity on the

Regge lattice [8]. From this model emerges a property, which could turn out to be more general

than the model itself: if we keep the fundamental length LP lanck in the theory, the vanishing of

the e�ective cosmological constant j�j in dependence of the energy scale p follows a law of the

form j�j(p) � G�1(LP lanck p)
 , where 
 is a critical exponent [9, 11]. It is not excluded that this

behavior of the e�ective cosmological constant may be observed in certain circumstances (see
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[12] and Section 5). Furthermore, the model predicts that in the large distance limit � goes

to zero while keeping negative sign. Also this property has probably a more general character,

since the weak �eld approximation for the gravitational �eld is \stable" in the presence of an

in�nitesimal cosmological term with negative sign, while on the contrary it becomes unstable

in the presence of a positive cosmological term (see Section 1.5).

1.2 Local cosmological term.

Summarizing, independently of the model there appears to exist a dynamical mechanism which

\rescales to zero" any contribution to the cosmological term and fortunately makes the gravi-

tational �eld insensitive to any constant term in the action of other �elds coupled to it. Nev-

ertheless, let us go back to the previously mentioned example of a Bose condensate described

by a scalar �eld �(x) = �0 + �̂(x). If the vacuum expectation value �0 is not constant but

depends on the spacetime coordinate x, in the gravitational action Sg appears a positive \local"

cosmological term which can have interesting consequences. Let us suppose that �0(x) is �xed

by external factors and let us decompose the gravitational �eld g��(x) as usual in the weak

�eld approximation, that is, g��(x) = ��� + �h��(x), where � =
p
8�G � LP lanck. The total

action of the system takes the form

S =
Z
d4x

q
g(x)

��
�

8�G
+
1

2
�2(x)

�
� 1

8�G
R(x)

�
+ Sh�0 + S�̂; (3)

where

1

2
�2(x) =

1

2
[@��

�
0(x)][@

��0(x)] +
1

2
m2

�j�0(x)j2; (4)

Sh�0 =
1

2

Z
d4x

q
g(x) @���0(x)@

��0(x)�h��(x); (5)

S
�̂

=
1

2

Z
d4x

q
g(x)

n
m2

�j�̂(x)j2 +m2
�

h
��0(x)�̂(x) + �0(x)�̂

�(x)
i
+

+
h
@��̂

�(x)@��̂(x) + @��
�
0(x)@��̂(x) + @��̂

�(x)@��0(x)
i
g��(x)

o
: (6)

In the action above the terms Sh�0 and S
�̂
represent e�ects of secondary importance. The

term Sh�0 describes a process in which gravitons are produced by the \source" �0(x). The term

S�̂ contains the free action of the �eld �̂(x) describing the excitations of the condensate, and
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several vertices in which the graviton �eld h��(x) and �̂(x) interact between themselves and

possibly with the source. All these interactions are not of special interest here and are generally

very weak, due to the smallness of the coupling �. The relevant point (eq.s (3), (4)) is that the

purely gravitational cosmological term �
8�G

receives a local positive contribution 1
2
�2(x) which

depends on the external source �0(x).

We shall call \critical regions" the regions of spacetime in which the following condition is

satis�ed: �
�

8�G
+
1

2
�2(x)

�
> 0: (7)

Since we know that the intrinsic cosmological term �=8�G is very small, we expect that these

regions are essentially determined by the source term �2(x) and thus, through (4), by the

vacuum expectation value �0(x). We shall discuss later (Section 5) whether there might be a

competition between the two terms in (7) and therefore a \threshold" e�ect.

1.3 Euclidean theory for weak �elds.

It is more convenient at this point to carry on our analysis in the Euclidean formalism, in

which the Minkowski metric ��� is replaced by the four-dimensional Euclidean metric ��� . This

amounts to replace the time variable with an imaginary variable and requires that the theory

behaves regularly with respect to a rotation of the time axis in the complex plane. For the

familiar quantum �eld theories in 
at spacetime this requirement is usually satis�ed, but in

the case of quantum gravity the situation is in general much more complicated since the metric

itself belongs to the dynamic variables of the theory. The equivalence of the gravitational

Euclidean theory [13] with the theory in real spacetime has not been proved yet, in spite of

the considerable e�orts in this direction [14]. Anyway, such an equivalence would be mainly

formal, as neither theory is well de�ned in a general sense.

We should also mention that in general the Euclidean Einstein action (the term �1
8�G

R p
gR

in eq. (1)) is not bounded from below [13]. Thus it is not possible to obtain the vacuum state

of the quantum theory (
at space) by minimizing the action in an elementary way, like in the

usual Euclidean theories. Several solutions to this problem have been proposed which exploit
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the freedom in the choice of the functional integration measure, the stochastic regularization

or the regularization through an R2 term, e�ective only at very small distances y.

Nevertheless, since in our case the gravitational �eld is always regarded as weak (small


uctuations around a 
at background), it is not necessary in fact to use Euclidean quantum

gravity in its most general form. We may treat it, \a la particle physics", like a normal quantum

�eld theory (or possibly an e�ective low-energy theory [15]) in which the background metric

is �xed and the analytical continuation between the Euclidean and Minkowskian case is well

de�ned. According to this approximation and to the physical reality we shall suppose that

in the absence of external sources the ground state of gravity is 
at spacetime, at least at

macroscopic scale. We do not specify the dynamical mechanism through which this ground

state emerges from the complete theory, although we regard the mentioned non-perturbative

Regge calculus simulations as particularly instructive in this sense.

The quadratic part of the Euclidean Einstein action is positive-de�nite on the average (see

Section 1.4) and thus e�ectively stable with respect to weak 
uctuations. In any case, as we

shall see, we are not really interested here in the stability of the R-term in the action, but into

that of a term of the form �eff

p
g (see eq. (14)). If necessary we can admit that the Euclidean

Einstein action has been suitably modi�ed in order to allow a correct analytical continuation

and to make it bounded from below also beyond the weak �eld approximation (compare [14]

and references) and this will not a�ect our conclusions.

1.4 Quadratic part of the action in harmonic gauge.

Let us consider the Einstein action with cosmological term (1) in the approximation of a weak

Euclidean �eld g��(x) = ��� + �h��(x), where � =
p
8�G. We �rst observe [16] that after the

addition of a harmonic gauge-�xing the quadratic part of the action takes the form

S(2)
g =

Z
d4xh��(x)V

����(�@2 � �)h��(x); (8)

y See for instance [8, 14]. The R2 term makes the theory renormalizable but non-unitary at perturbative

level. However, it is believed that the unitarity problem should be solved by the complete theory.
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where V ���� = ������ + ������ � ������. In momentum space (8) becomes

S(2)
g =

Z
d4p ~h��� (p)V

����(p2 ��)~h��(p) (9)

=
Z
d4p (p2 � �)

n
2Tr[~h�(p)~h(p)]� jTr~h(p)j2

o
: (10)

From (9) one often desumes that in this approximation a cosmological term amounts to a mass

term for the graviton, positive if � < 0 and negative (with consequent instability of the theory;

see also [12] and references therein) if � > 0. Since in the presence of a condensate the sign

of the total cosmological term depends on the coordinate x (eq. (3)) we might expect some

\local" instabilities in the critical regions (7) in that case.

We make now a short digression from our main argument and check the positivity of the

quadratic part of the Euclidean Einstein action in harmonic gauge. Note that since h is a

symmetric tensor, we can diagonalize it at any point before extracting its trace. The quadratic

form 2Tr(~h�~h)� jTr~hj2 in (10), expressed in terms of the diagonal ~h, namely

Q = 2
X
�

j~h��j2 � jX
�

~h��j2 =
X
�

j~h��j2 �
X
� 6=�

~h���~h�� (11)

has negative as well as positive eigenvalues. This should be expected, as the scalar curvature

R has no de�nite sign, and means that the quadratic part of the action has no minimum for

h = 0. Remember however that we are working in the Euclidean functional formulation of

the theory, so the �eld h is supposed to \
uctuate thermally" with temperature � = �h=kB

(compare also eq.s (22), (23)). Also note that having already diagonalized h at any point, we

cannot do any further linear transformation on it. Taking the mean value of Q and assuming

that the correlations hh��h��i vanish by isotropy for � 6= � we obtain hQi = P
�hjh��j2i. We

conclude that the quadratic part of the Einstein action is stable \on the average" at h = 0. For

an e�ective theory (compare our discussion in Section 1.3) this should be su�cient.

1.5 Quadratic part of g1=2 and instabilities.

We can prove the appearance of instabilities in the presence of a positive cosmological term

at a more general level. Before introducing any gauge-�xing for the gravitational �eld and

disregarding the Einstein action for a moment, let us study the stability of the cosmological
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term 1
8�G

p
g. The expansion of the determinant g gives to �rst order in �

g(1) = �Trh (12)

and to second order

g(2) =
1

2
�2
h
(Trh)2 � Tr(h2)

i
: (13)

Recalling the expansion
p
1 + � = 1 + 1

2
� � 1

8
�2 + ::: and rearranging the second order terms

one �nds

[
p
g](2) =

1

8
�2
h
(Trh)2 � 2Tr(h2)

i
: (14)

(By the way, we have checked in this fashion that the quadratic part of
q
g(x) has the same

algebraic structure in h as the Einstein term in harmonic gauge.)

Now we can impose the condition Trh = 0 z and look at the stability of the total action

1
8�G

R
d4x

p
g(�eff � R). If �eff > 0 the cosmological term is clearly unbounded from below

with respect to any \zero mode" h(x) which leaves unchanged the rest of the Euclidean action

{ that is, the Einstein term �1
8�G

R
d4x

p
gR. This requirement is satis�ed by �elds h which are

solutions of Einstein equations

R��(x)� 1

2
g�� (x)R(x) = �8�GT��(x) (18)

with T�� satisfying the condition

Z
d4x

q
g(x)Tr T (x) = 0 (19)

z We can always impose Trh = 0 in the Euclidean weak �eld approximation, since the gauge transformations

have the form

h��(x)! h��(x) + @�f�(x) + @�f�(x) (15)

with f�(x) arbitrary and thus the condition on the transformation is

@�f�(x) = �
1

2
Trh(x): (16)

By choosing f�(x) of the form @�F (x) we obtain the condition

@2F (x) = �
1

2
Trh(x); (17)

which in Euclidean spacetime is easily solved.
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(note that for solutions of (18) one has R(x) = 8�GTr T (x)).

In Minkowski space one can easily exhibit zero modes of Einstein action: namely gravi-

tational waves satisfy eq. (18) with T��(x) = 0 and in particular they satisfy a linear wave

equation in the weak-�eld approximation. In Euclidean space the linearized Einstein vacuum

equations take the form of four-dimensional Poisson equations, as can be seen most easily in

harmonic gauge. Thus they do not admit nontrivial solutions for T (x) = 0 everywhere. How-

ever condition (19) can be also satis�ed by energy-momentum tensors which are not identically

zero but may have negative and positive sign, in such a way that their total integral is zero. Of

course, they do not represent any acceptable physical source, but the corresponding solutions of

(18) exist anyway and are zero modes of the Euclidean action. One can consider, for instance,

the static �eld produced by a \mass dipole" (which eventually we imagine as centered in a

critical region), with behaviour h � r�2, etc.

In conclusion, in the regions where �eff > 0 the zero modes of h��(x) tend to grow without

restriction. In the case of the interaction with a Bose condensate, such regions are the critical

regions (7). Since we are considering a weak-�eld approximation, we shall assume that in fact in

those regions the �eld oscillates between extremal values, with null average. With an expression

borrowed from experimental physics, we might say that h2 \saturates" in those regions. The

extremal values will be determined by some physical cut-o� and are not relevant if we are

concerned only with the average (compare Section 3).

1.6 Comparison with the classical case.

The instability e�ect described above is of quantum nature. In General Relativity the conse-

quences of a positive e�ective cosmological term �eff(x) are not quantitatively di�erent from

those of an ordinary mass-energy density T00(x) and we do not see any hint of instability in the

corresponding solutions of classical Einstein equations. For instance, the trace of the Einstein

vacuum equations derived from the action (1) is R(x) = �eff (x). On the other hand, taking

the trace of the equations without cosmological term but in the presence of matter we obtain

as mentioned

R(x) = 8�GTr T (x): (20)
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This means that in the regions in which �eff(x) or T00(x) are di�erent from zero, the curvature

radius � of spacetime is of the order of � � 1=
q
�eff(x) or � � 1=

q
T00(x). For an ordinary

density � is very large, say � � 1016 cm at least (see Section 5).

One key di�erence between a classical \geometrodynamical" view of General Relativity

and the quantum �eld theory on a 
at background lies in the interpretation of the factor

p
g in the action. In order to derive the classical equations (18) from the total action of the

[gravity+matter] system one de�nes the energy-momentum tensor T ��(x) in such a way that a

variation �g��(x) of the metric a�ects the action as follows:

�Smatter =
1

2

Z
d4x

q
g(x)T ��(x)�g��(x): (21)

In the quantum theory of gravity on a 
at background \a la particle physics", which we are

adopting, the point of view is di�erent. The factor
q
g(x) does not have the classical geometrical

meaning of four-volume measure anymore. It is expanded in a power series of � and the

contributions obtained in this way are added to the rest of the covariantized action, giving rise

as we saw also to a negative quadratic term in h (eq. (14)). Thus the instability which follows

from this term for �eff > 0 should be regarded as a quantum gravity e�ect, connected to the

perturbative theory around a 
at background.

Finally we recall that in several cosmological theories [17] one assumes that at some stage

of the evolution of the universe there can be large negative contributions to T 00, due to the

instability of certain �elds or to the formation of a condensate. Our model does not have

anything in common with these (essentially classical) theories.

1.7 General functional integral for the static potential.

In the following we shall be interested in the in
uence of the induced cosmological term �2(x) on

the gravitational interaction of two masses m1 and m2 at rest. This in
uence can be computed

in principle inserting �2(x) in the general formula for the static potential in Euclidean quantum

gravity [3, 9, 10]

U(L) = lim
T!1

� �h

T
log

1

Z

Z
d[g] exp

8<
:��h�1

2
4Sg + X

i=1;2

mi

Z T

2

�T

2

dt
q
g�� [xi(t)] _x

�
i (t) _x

�
i (t)

3
5
9=
; (22)

11



where Sg is the gravitational action (1) and Z a normalization factor. The trajectories xi(t) of

the two massesm1 andm2 are parallel with respect to the metric g. L is the distance between the

trajectories, corresponding to the spatial distance of the two masses. The interaction energy

U(L) of the two masses depends on the correlations between the values of the gravitational

�eld on the \Wilson lines" x1(t) and x2(t). This can be veri�ed explicitly in the weak �eld

approximation or through numerical simulations.

We can rewrite eq. (22) in the presence of the Bose condensate as

U [L; �2(x)] = lim
T!1

� �h

T
log

1

Z

Z
d[g]

Z
d[�̂]

exp

8<
:��h�1

2
4S[g; �̂; �0] + X

i=1;2

mi

Z T

2

�T

2

dt
q
g�� [xi(t)] _x

�
i (t) _x

�
i (t)

3
5
9=
; ; (23)

where S[g; �̂; �0] is the total action de�ned in (3). We have seen that in the weak �eld approx-

imation h2 \saturates" in the critical regions. As a consequence, the �eld correlations present

in the functional integral are modi�ed. We showed earlier with a simple numerical model [12]

that in general this reduces jU j. Also from an intuitive point of view it is quite clear that local

constraints on the �eld damp its correlations. An explicit evaluation of the functional integral

(23) is however quite di�cult. In Section 3 we shall work out a simpler model based on a

classical limit.

Two �nal remarks are in order:

1. Notice that according to the general de�nition of the center of mass of a system in the

presence of gravity eq. (22) holds, more generally, when xi(t) represent the trajectories of

the centers of mass of two extended bodies. This property can explain why the observed

height dependence of the shielding e�ect is so weak (compare Section 2 and [18, 20])

although the disk apparently should \shield only part of the Earth".

2. We observe that in order to a�ect the quadratic part of the gravitational action the local

cosmological term �2(x) must contain only �elds, like �0(x), which do not belong to

the functional integration variables. For instance, the terms containing �̂(x) in eq. (6)

are not included in �2(x) (eq. (4)), because in perturbation theory they represent simply

12



interaction vertices. This remains true even if �̂(x) is coupled in turn to a further external

source.

This reasoning can be generalized to other �elds possibly present in the total action.

One concludes that a cosmological contribution like �2(x) can only originate from a �eld

with non-vanishing vacuum expectation value. In our case the vacuum expectation value

�0(x) is the result of a number of external physical factors: the action of the e.m. �eld (see

Section 2), the equilibrium of the thermodinamic potentials of the condensate in the given

conditions of temperature, the microscopic structure of the superconducting material etc.

2 Experimental evidences.

2.1 Summary.

A recent experiment [4] has shown an unexpected interaction between the gravitational �eld

and a superconductor subjected to external e.m. �elds. In this Section we summarize the main

reported observations, trying to focus on the essential elements, since the experimental situation

is quite complex. We add a few qualitative remarks on the possible theoretical interpretations

of these observations according to the model with \anomalous" coupling between h(x) and

�0(x) introduced in the previous Sections. A more quantitative application of the model is

given in Section 3.

The core of the experimental apparatus is a toroidal disk of diameter 27 cm made of high

critical temperature (HTC) superconducting material. The disk is kept at a temperature below

70 K; it levitates above three electromagnets and rotates (up to ca. 5000 rpm) due to the

action of additional lateral magnetic �elds. All electromagnets are supplied with AC current

with variable frequency. Within certain frequency ranges one observes a slight decrease in the

weight of samples hung above the disk, up to a maximum \shielding" value of ca. 1%. A smaller

e�ect, of the order of 0.1% or less, is observed if the disk is only levitating but not rotating.

The percentage of weight decrease is the same for samples of di�erent masses and chemical

compositions. One can thus describe the e�ect as a slight diminution of the gravity acceleration
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gE above the disk. The dependence of the e�ect on the height above the disk is very weak:

there appears to be in practice a \shielding cylinder" over the disk (compare also [18, 20]),

extending for 3 meters at least. The resulting �eld con�guration is clearly non conservative.

An horizontal force at the border of the shielding cylinder has occasionally been observed, but

it is far too small to restore the usual \zero circuitation" property of the static �eld. No weight

reduction is observed under the disk.

The disk has a composite microscopic structure: the upper part is treated with a thermal

process which melts partially the grains of the HTC material, while the lower part is more

granular and has a lower critical temperature. This double structure aims at obtaining good

levitation properties of the disk, while leaving also a layer in which considerable resistive e�ects

can arise. In general both requirements appear necessary for the e�ect to take place: (1) the

disk must be able to support intense super-currents; (2) a granular structure with pinning

centers must be present, such to oppose resistance to variations of the super-currents pattern

while the disk is subjected to alternate e.m. �elds.

2.2 Interpretation.

We have already stressed in our analysis [5] that an interpretation of the reported e�ect in

the framework of General Relativity, as due to repulsive post-newtonian �elds produced by

the super-currents [19], is untenable, since the magnitude order of the e�ect is far too large.

The work [20] shows that the contribution from the super-currents to the static component

g00 of the post-newtonian gravitational �eld over the disk is not only much smaller than the

observed e�ect (by several magnitude orders), but it is attractive like the newtonian �eld of the

Earth. Even taking into account perturbative quantum corrections to the Newton potential

one reaches the same negative conclusion.

Our interpretative model of the experimental results [5] is based on the \anomalous" cou-

pling between Bose condensate and gravitational �eld described by eq.s (3), (4). In this model

the essential ingredient for the shielding is the presence of strong variations of the Cooper pairs

density in the disk: we assume that such variations produce small regions with higher den-

sity, where the criticality condition (7) is satis�ed and thus an additional boundary condition
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is imposed on the gravitational �eld. x

In this view the disk's rotation in the external magnetic �eld plays the role of forcing the

pattern of the super-currents and thus the local condensate density. It is known that in general

by moving a type II superconductor (of which the HTC are one example, that is, with a structure

of superconducting and non-superconducting regions) in an external �eld or by applying to it

an AC, one causes resistive phenomena, since the super-currents' pattern is unable to follow the

�elds variations. In the present case it has been in fact observed that while the peak shielding

values are produced, the disk tends to heat up.

This point of view { suggested by a long analysis of the experimental results in search of a

consistent interpretation { allows one to regard the experimental conditions reported in [4] as a

particular case, open to changes and simpli�cations. The levitation of the disk does not appear

to be per se necessary, but just convenient in order to rotate it. In turn, the rotation in the

external �eld aims essentially, as mentioned, at forcing the currents' pattern. Thus one might

perhaps simply rotate the disk mechanically in a �xed external �eld, or rapidly vary the �elds

direction and strength while leaving the disk at rest. The latter technique has been recently

employed with positive results (Section 2.3).

Even if we stick to the relatively simple picture above, according to which the essential are

the variations of the Cooper pairs density, there remains for the theory the general task of

predicting such variations in dependence of the disk structure, of the external �elds etc. This

is clearly a very di�cult task, especially for an HTC superconductor. It seems more likely

at present that the optimization of the parameters mentioned above (disk structure, external

�elds, etc.) will be �rst approached in a semi-empirical way.

Another crucial feature of the experimental apparatus is the frequency spectrum of the

applied e.m. �eld. Independently of the reason for which the external e.m. �eld was originally

employed, it is clear in our opinion that it plays a fundamental role in supplying the energy

necessary for the \absorption" of the gravitational �eld in the critical regions. A simple model

x Clearly the local condensate density can never exceed the total electronic density. The average condensate

density also increases at lower temperatures but the power transfer process becomes more di�cult in that case

(compare Section 5.2).
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which describes this mechanism is presented in Sections 3, 4. Experimentally one observes [4]

that the maximum shielding value is obtained when the coils are supplied with high frequency

current (of the order of 10 MHz).

In general, the power transfer to the disk has necessarily a limited e�ciency. This represents

one of the most serious problems to overcome in order to obtain the shielding e�ect in stable

form, especially for heavy samples, without using an excessive amount of refrigerating 
uid to

avoid the heating of the disk and the ensuing loss of its superconducting properties. One should

also remind that the maximum shielding value was observed in conditions close to the resistive

transition. This makes clear why it is important to use a disk made of HTC material: in a

low-temperature superconductor, admitted one can reach the critical density conditions, the

speci�c heat is probably too small to maintain them in a stable way and to allow any power

transfer.

2.3 A new demonstration experiment.

One of us (J.S.) has recently succeded [21] in reproducing the weak gravitational shielding e�ect

for a short time interval (up to 5 seconds). The experimental setup was designed in such a

way to eliminate as far as possible any non-gravitational disturbance and to show a precise

temporal correspondence between actions taken on the HTC disk and the weight reduction of

the samples. Although the observed weight reduction was quite large (of the order of 5%) this

experiment should be regarded just as a demonstration experiment. In fact, many actions had

to be taken literally by hand, the samples employed were in all cases very light and the short

duration of the e�ect did not allow any precise spatial mapping of the �eld.

It is very remarkable that in this experiment the e�ect was obtained without subjecting

the disk to any rotation. This supports our interpretation of the e�ect and rises hopes that

the original experimental setup of Podkletnov and co-workers could be substantially simpli�ed.

However, at the present there is no evidence that the e�ect can be obtained in stable form

without rotation {. Also, it should be mentioned that similar temporary e�ects were observed

{ According to public releases, the NASA group in Huntsville, Alabama, is cloning Podkletnov's experiment.

This is a di�cult task, especially for the sophisticated technology involved in the construction of the large HTC
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by Podkletnov et al. since the �rst measurements, too [4].

The experimental setup consists of (a) a hexagon-shaped YBCO 1" (2.5 cm) superconduct-

ing disk, 6 mm thick; (b) a magnetic �eld generator producing a 600 gauss/60 Hz e.m. �eld;

(c) a beam balance with suspended sample.

The beam is made of bamboo, without any metal part, coming to a point on one end (24.6

cm long, weight 1.865 g). The sample is made as follows. A cardboard rectangle (16 mm by 10

mm by 0.13 mm) is suspended from the balance with 2.8 cm of cotton string. A polystyrene

\pan" (7.2 cm by 8.7 cm by 1.7 mm) is attached with paper masking tape to the cardboard

rectangle. The total sample assembly (with string, cardboard, tape) weighs 1.650 g.

The balance is suspended from the end of a 150 cm wood crossbeam by ca. 30 cm of

mono�lament �shing line (8 lb. test) attached to the balance's center of mass (5.5 cm from the

end where the sample is attached). The other end of the crossbeam is �rmly anchored by a

heavy steel tripod. Thermal and e.m. isolation is provided by a glass plate (15 cm by 30 cm,

0.7 cm thick) with a brass screen attachment. This plate-and-brass-screen assembly is held

about 4.5 cm below the sample by a \3-�nger" ring stand clamp. A straightsided, 6" diameter,

10" deep dewar with 3-4" of liquid nitrogen is used to cool the superconducting disk below its

critical temperature, and is removed from the experiment area before the trial.

The experimental procedure comprises the following steps.

1. The YBCO superconductor is placed in a liquid nitrogen bath and allowed to come to

liquid nitrogen temperature (as indicated when the boiling of the liquid nitrogen ceases).

The superconductor will remain below its critical temperature (about 90 K) for the

duration of the trial (less than 20 seconds).

2. The disk is then removed from the bath and placed on a strong NdFeB magnet to induce

a supercurrent. The Meissner e�ect is counteracted by a wooden stick. The supercon-

ducting disk has a cotton string attached to it to assist handling.

disk and in the control of its rotation. We are also aware, though still at un-o�cial level, of other groups working

at the experiment with smaller disks.
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3. The disk and wooden stick assembly is placed on the AC �eld generator, about 33 cm

below the isolation plate and about 40 cm below the sample. The AC �eld generator

is then cycled for ca. 5 seconds with 0.75 sec equal-time on/o� pulses. Prior to a run

the sample is centered to be over the middle of where the disk will �nally be, on the AC

�eld generator. The idea is that the \column" of modi�ed gravity has to hit the sample

somewhere as the disk is only 1 inch in diameter and the sample is much larger.

One observes that while AC current is 
owing through the generator the balance pointer

dips 2.1mm downward. When the AC �eld generator is pulsed with no superconductor present,

there is no measurable pointer de
ection. Also air 
ows do not cause any measurable de
ection.

The whole procedure is well reproducible.

The weight di�erence required to raise the sample by 2.1 mm was then found to be 0.089

g. This was measured taking advantage of the fact that the suspension wire produces a small

torque on the balance beam toward the equilibrium position: the balance pointer was found to

raise 2.1 mm upward when a weight of 0.089 g was placed above the sample.

An improved version of the experiment is being developed. Details will appear elsewhere.

3 The modi�ed �eld to lowest order.

3.1 Static classical limit of the functional integral.

In this Section we study in a suitable approximation the consequences of the anomalous coupling

between the gravitational �eld and the Bose condensate taking place in the critical regions (i.e.,

where condition (7) is satis�ed). We aim at verifying in this way whether from our theoretical

hypoteses follow plausible phenomenological consequences and at composing a picture of the

shielding phenomenon which may help in understanding various aspects: in which sense a

constant gravitational �eld is slightly \absorbed" in the disk and turns out to be weaker above

it; if the �eld modi�ed in this way is conservative; which is the global energy balance of the

process etc.

We have seen that in the presence of strong variable e.m. �elds, in the superconducting
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disk small regions can appear in which the Cooper pairs density is particularly high. We shall

discuss later whether there is necessarily a \threshold" density which must be exceeded for

the anomalous coupling to be possible. The distribution of these regions varies with time, as

the superconductor moves in the external e.m. �eld, but for our reasoning we can consider the

situation at a �xed instant. We can also suppose that the number of singular regions for unit

volume remains almost constant until the external conditions are modi�ed (rotation frequency,

�eld parameters, temperature). The size of the critical regions is of the order of the coherence

length �, that is, of the scale at which typically the variations of the order parameter take place

in the given material.

As explained in Section 1, let us suppose that inside the singular regions the gravitational

�eld is \forced" by the interaction with the condensate to oscillate around zero. We want to

see how this can in
uence a pre-existing �eld con�guration. Let us then consider, as done

in Section 1.7, the functional integral of Euclidean gravity and add to the action a static

cosmological source term �2(x). Let us also add a static source T ��(x) which generates a

constant background �eld of strength gE. We can write the averaged Euclidean �eld in weak

�eld approximation as follows:

h0jh��(x)j0i = 1

Z

Z
d[h]h��(x) exp

�
��h�1

�Z
d4x

p
g
�

�

8�G
+
1

2
�2 � R

8�G
+ �h��T

��

���
:

(24)

where g and R must be expressed in terms of h�� . The functional average is dominated by the

functions h which minimize the action. But we know from the analysis of Section 1 that these

functions are those which solve the �eld equation in the presence of the source T �� and of the

constraints corresponding to the \saturation" of jhj2 in the critical regions (7). Thus h is zero

on the average in the critical regions. Since �2 and T �� do not depend on time, we expect that

the average �eld does not depend on time either. It follows that the analytical continuation

to imaginary time necessary to translate back the expectation value into Minkowski space is

trivial.
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3.2 Constrained �eld equation and its solution.

In order to guess the solution of the static �eld equation in the presence of the given source and

constraints, let us now follow an analogy with an electrostatic �eld. In that case the regions in

which the electric �eld and potential are forced to zero could be realized by very small perfect

conducting grounded spheres or plaquettes.

We must check that the gravitational �eld equation in the case we are considering is anal-

ogous to that of the electrostatic �eld. We �rst write the equation of the trajectory x�(� ) of a

particle in free fall in a given gravitational �eld g�� (x), called the geodesic equation:

d2x�(� )

d� 2
+ ���� [x(� )]

dx�(� )

d�

dx�(� )

d�
= 0; (25)

where � is the proper time, with di�erential d� =
q
dx�dx�g�� and ���� is the Christo�el

connection

���� =
1

2
g�� (@�g�� + @�g�� � @�g�� ) : (26)

In this equation and in the following we omit for simplicity the arguments of the �elds.

We now specialize to the static case, supposing the particle initially at rest, and compute

its acceleration. For the spatial components xi eq. (25) takes the form

d2xi

d� 2
+ �i00

 
dx0

d�

!2

= 0: (27)

In the following we work in the weak �eld approximation and consider only terms of lowest

order in �. For the connection (26) we have

�(1)�
�� =

1

2
���� (@�h�� + @�h�� � @�h��) (28)

and in particular, in the static case

�
(1) i
00 = �1

2
�@ih00: (29)

In eq. (27) the proper time � di�ers from the coordinate time only for terms of order �,

thus to lowest order the acceleration is given by

d2xi

dt2
= Gi; with Gi = ��(1) i

00 =
1

2
�@ih00: (30)
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On the other hand the �eld must satisfy Einstein vacuum equations R�� = 0. Disregarding

the quadratic terms in the connection we can write them as

@��
�
�� � @��

�
�� = 0: (31)

For the 00 component in the static case one has

@i�
i
00 = 0: (32)

In conclusion, the gravitational acceleration of a particle at rest is given to lowest order in �

by a vectorial �eld Gi with zero divergence in the vacuum which is the gradient of the potential

�1
2
�h00. This justi�es, in that approximation, an analogy with the electrostatic �eld and the

electrostatic potential.

Thus we can represent also the gravitational �eld in this case with �eld lines. Still following

the electrostatic analogy (justi�ed by the fact that the �eld equations and the boundary condi-

tions for the two �elds are the same), we observe that when a �eld line meets a singular region

it is intercepted. The �eld lines are just conventional objects and the number of lines which

cross the unity surface is proportional to the �eld intensity, the proportionality constant being

arbitrary. Thus the �nal e�ect must not depend on such constant, as can be easily veri�ed.

The fraction of intercepted �eld lines, corresponding to the shielding factor �, is approxi-

mately equal to the ratio between the total cross section of the singular regions and the area

of the disk. Let us suppose that in the presence of shielding the gravity acceleration over the

disk is gE(1 � �); we have in this simpli�ed model

� � N�

Sdisk
= n�; (33)

where � is the average cross section of a singular region, N is the total number of singular

regions in the disk and n is the number of singular regions for unit disk surface.

3.3 Discussion.

The average value for h��(x) obtained in the previous Section is unsatisfactory for two reasons:

(1) it does not account for the observed non conservative character of the �eld in the presence

of shielding (compare 2.1); (2) it does not reproduce the observed null e�ect below the disk.
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In other words, while the observations indicate that there is a kind of \absorption" of the

gravitational �eld in the disk, with a long cylindrical shielding region above it and no e�ect

below, the �eld solution mentioned above has the typical features of an electric shielding:

namely, a grounded conducting plaquette placed across a constant electrostatic �eld projects a

\+/- shadow" in the �eld with a length of the same order of its width. (In the electric case,

this is due to the superposition of the constant �eld and of the �eld produced by the electric

charges induced on the plaquette.)

In fact we cannot be sure that averaging h as done above is correct. We know that in the

quantum theory the gravitational force between two masses at rest is given in principle by eq.

(23) but that equation does not give us enough information to compute the average �eld, nor it

ensures that in the quantum case an average �eld is well de�ned at all. For instance, we would

not be able to predict through eq. (23) if the gravitational red-shift is a�ected by the shielding.

(This would actually be an interesting experimental check.)

Thus an important task for the theory would be that of evaluating eq. (23) in a suitable

approximation in order to check if the resulting e�ective �eld corresponds to the observed

con�guration. At present we shall limit ourselves to the following consideration. We observe

that in practice only the gravitational acceleration of the samples is measured in the experiment,

i.e., the connection �(1) i
00 (compare (30). We can admit that due to the quantum instability e�ect

� vanishes in the critical regions. This perturbs slightly the pre-existing �eld con�guration and

produces a cylindrical shadow as observed. One can easily verify that a �-con�guration of

this kind still satis�es eq. (32) outside the disk and thus Einstein equations to lowest order.

The energetic balance is ensured by the external non-gravitational source which constrains �

(compare also the next Section).

4 Energetic balance.

After having introduced in the preceding Section a model which describes in an approximate

way the variation of the gravitational �eld in the presence of the disk, it is necessary now to

discuss some issues of elementary character, but important from the practical point of view,

22



concerning the overall energetic balance of the shielding process.

In general one will have to supply energy in order to reduce the weight of an object, because

the potential gravitational energy of the object has negative sign and is smaller, in absolute

value, in the presence of shielding. Nevertheless, since the �eld is not conservative, it is certainly

wrong to compute the di�erence in the potential energy of an object between the interior and

the exterior of the shielding cone by evaluating naively the di�erence (which turns out to be

huge) between an hypothetical \internal potential"

U = �GMME(1� �)

RE

= �MgERE(1 � �); (34)

where M is the mass of the object, RE the Earth radius and ME the Earth mass, and an

\external potential" U = �MgERE.

Moreover, the gravitational �elds with which we are most familiar, being produced by very

large masses, are relatively insensitive to the presence of light test bodies and thus it makes

sense in that case to speak of a �eld in the usual meaning: while a body falls down, we do not

usually need to worry about its reaction on the Earth. On the contrary, in the present case

the interaction between the shielded object and the external source (that is, the system [Bose

condensate+external e.m. �eld]) which by �xing the constraints on the gravitational potential

h produces the shielding, is very important. k

Let us then ask one \provocative" question, suggested by the experimental reality: if the

superconducting disk is in a room and the shielding e�ect extends up to the ceiling, should

we expect that the disk and all the shielding apparatus feel a back reaction? (And possibly

an even stronger one if the ceiling is quite thick or if there are more 
oors above?) The most

reasonable answer is, that since the ceiling is very rigid, the experimental apparatus is not able

to exert any work on it and thus does not feel its presence.

To further clarify this point, suppose that we hang over the superconducting disk, before

the shielding is produced, a spring of elastic constant k, holding a body of mass M at rest.

Then we operate on the disk with proper e.m. �elds and produce the shielding e�ect with

k Because of this, also considerations involving the energy density of the gravitational �eld, which can be

properly de�ned for weak �elds, are not helpful in the present case.
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factor �, that means, the gravity acceleration over the disk becomes gE(1��). If the shielding

e�ect is obtained quickly, the mass will begin to oscillate, otherwise it will rise by an height

�x = �gEMk�1, while remaining in equilibrium. In any case, since for a harmonic oscillator in

motion the kinetic energy and the potential energy have the same mean value, it is legitimate

to conclude that the shielding apparatus has done on the system [mass+spring] a work of the

order of

�E � k(�x)2 � (�gEM)2k�1: (35)

This example shows that the work exerted by the apparatus on a sample in order to \shield it"

will depend in general of the response of the sample itself, being larger when such response is

large itself.

At this point we can estimate how much energy is needed in this case to bring over the

critical density one region of the condensate of cross section � (compare eq. (33)). If �sample is

the projection of the sample on the disk, this energy is given by

�E� =
�

�sample

�E � �

�sample

(�gEM)2k�1: (36)

This energy must be supplied by the external variable e.m. �eld.

In conclusion, we must expect in general an interaction between the partially shielded

samples and the shielding apparatus. The energy needed to shield a sample depends on the

mass of the sample itself and on the way it is constrained to move. In particular, we deduce

from eq. (35) that if we want to detect the shielding e�ect by measuring the deformation of a

spring, in order to do this with the smallest in
uence on the shielding apparatus we should use,

as far as allowed by the sensitivity of the transducer, a spring with high rigidity coe�cient k.

5 The \threshold" hypothesis.

5.1 Estimate for �2(x).

A local cosmological term can induce gravitational instabilities in those regions where its total

sign is positive. We have shown that the contribution of a Bose condensate to the cosmolog-

ical term is positive (in Euclidean spacetime) and equal to 1
2�

2(x) = 1
2 [@��

�
0(x)][@

��0(x)] +
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1
2
m2

�j�0(x)j2 (see eq.s (3), (4)). It is important to give a numerical estimate of the magnitude

order of this contribution in the case of a superconductor.

To this end we recall that the Hamiltonian of a scalar �eld � of mass m� is given by

H =
1

2

Z
d3x

8<
:
�����@�(x)@t

�����
2

+
3X
i=1

�����@�(x)@xi

�����
2

+m2
�j�(x)j2

9=
; : (37)

In our case � describes a system with a condensate and its vacuum expectation value is

h0j�(x)j0i = �0(x). We then have

h0jHj0i = 1

2

Z
d3x�2(x): (38)

In the non-relativistic limit, appropriate in our case, the energy of the ground state is essentially

given by NV m�, where m� is the mass of a Cooper pair (of the order of the electron mass; in

natural units m� � 1010 cm�1), V is a normalization volume and N is the number of Cooper

pairs for unit volume. Assuming N � 1020 cm�3 at least we obtain

�2 � Nm� > 1030 cm�4 (In a superconductor:) (39)

We also �nd in this limit j�0j � N=
p
m�.

As we saw in Section 1, a typical upper limit on the intrinsic cosmological constant observed

at astronomical scale is j�jG < 10�120, which means j�j=8�G < 1012 cm�4. This small value,

compared with the above estimate for �2(x), supports our hypothesis that the total cosmological

term can assume positive values in the superconductor and the criticality condition can be

satis�ed in some regions. But in fact the positive contribution of the condensate is so large that

one could expect the formation of gravitational instabilities in any superconductor, subjected

to external e.m. �elds or not { a conclusion which contrasts with the observations.

We wonder if the value of �=8�G at small scale could be larger than that observed at

astronomical scale and negative in sign, in such a way to represent a \threshold" of the order of �
1030 cm�4 for anomalous gravitational couplings. As we recalled in Section 1, a negative intrinsic

cosmological constant can be present in models of quantum gravity containing a fundamental

length. With a magnitude as mentioned above, it would not a�ect any other known physical

process.
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5.2 Threshold versus power transfer e�ciency.

In our opinion the hypothesis of a threshold accounts quite well for the features of the observed

e�ect and in fact we have implicitly accepted it in several qualitative points of our analysis,

especially in Section 2. As we pointed out throughout the paper, all evidences show that a

proper \driving" and forcing of the supercurrents in the disk and thus of the Cooper pairs

density are essential in order to obtain the shielding e�ect and to improve it.

However, the available experimental data are not su�cient yet to decide whether the hy-

pothesis of a threshold for the Cooper pairs density is necessary, or it is only a helpful schematic

representation. In fact, as we stressed in Section 4, a global energy balance must be respected

in the shielding process. This energetic requirement might be very important in determining

the critical regions.

Let us consider for instance another system in which a Bose condensate, described by a

macroscopic wavefunction, is present: super
uid helium. From eq. (39) we see that in that

case �2 is ca. 103 times larger than in an electronic Bose condensate. But super
uid helium

does not show, according to common knowledge (although speci�c data are not available),

any anomalous gravitational e�ects. To explain this we can observe that unlike an electronic

condensate, super
uid helium is neutral and thus cannot absorb energy from an external e.m.

�eld. Moreover, its speci�c heat is so low, that in general any power transfer process would

be severely constrained. It is thus possible in our opinion that although its density is much

larger than that of an electronic condensate, super
uid helium does not cause any appreciable

shielding e�ect, since a modi�cation of the �eld h��(x) as described in Section 3, with ensuing

reduction of the samples' weight, would not be sustained energetically. In other words, the

local \saturation" of the �eld h��(x) represents an energetically less favoured state and in the

case of super
uid helium there is no suitable external energy source to allow the transition to

this state.

Summarizing, the following reasoning holds, at least qualitatively, and might be applied to

the next available experimental data. We have seen that the shielding phenomenon involves a

power transfer process, which in general can be more or less e�cient. There are two limiting
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cases:

1. The power transfer is very e�cient. Then the shielding factor � is �xed by the number

of critical regions and by their average cross section (compare eq. (33)), independently of

the energy transferred to the samples.

2. The power transfer is ine�cient. In this case the shielding factor � can depend on the

energy transferred to the samples. Thus � can depend on the mass of the samples. For

samples with the same mass, it can depend on their cross section and possibly on the

\rigidity" parameter k (compare eq. (36)).

Suppose now to be in the limiting case (1), as experimentally it appears to be the case,

at least for samples whose mass does not exceed � 100 g. If in these conditions the shielding

factor � depends strongly on the rotation speed of the disk, on the applied e.m. �eld and in

general on those factors which imply the generation of density variations in the condensate,

this means that the number of critical regions and their average cross section depend strongly

on such variations. In turn, the latter means that the existence of a threshold is very likely.

6 Concluding remarks.

The analysis of Section 1 allows us to conclude that there is broad evidence for instability of

the quadratic part of the Euclidean gravitational action in the presence of a Bose condensate.

We recall our starting hypotheses:

1. Validity of the Euclidean formalism in the context of weak-�eld approximation was as-

sumed. As discussed in Section 1.3 there are no reasons to doubt of such validity in our

case.

2. We admitted (compare also Section 1.7) that the vacuum expectation value �0(x) of

the bosonic �eld is determined by external factors: e.m. �eld, temperature, microscopic

structure of the material etc. From a phenomenological point of view this approach is

completely justi�ed and allows to divide the problem in two parts: the dynamics of the
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source �0(x) and the e�ects of the source on the gravitational �eld. This approximation

is not adequate when the back-reaction of the gravitational �eld on the source cannot be

disregarded (compare Section 4).

The description of the e�ects of the instability in terms of a classical \modi�ed �eld" (Section

3) is physically helpful, even though it leads to only partially correct consequences.

In general, in the energetic balance for heavy samples one should keep into account the

back-reaction mentioned above.

The existence of a critical threshold for the value of the induced cosmological term �2(x) is

theoretically appealing and in reasonable agreement with the experimental observations.
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